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Dispersion-managed soliton in optical fibers with zero
average dispersion
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A dispersion-managed optical system with stepwise periodic variation of dispersion is studied in the framework
of a path-averaged Gabitov–Turitsyn equation. The soliton solution is obtained by means of iterating the
path-averaged equation. The dependence of soliton parameters on dispersion map strength is investigated,
together with the oscillating tails of the soliton. © 2000 Optical Society of America
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A dispersion-managed (DM) system,1 which is a sys-
tem with periodic variation of dispersion along an
optical f iber, is one of the key components of develop-
ment of ultrafast high-bit-rate optical communication
lines.2 – 7 The main factor that limits bit-rate capac-
ity is pulse broadening, which is due to chromatic dis-
persion of the optical f iber and can be overcome by
periodic changes of the sign of the fiber’s dispersion
to create low (or even zero) path-averaged dispersion.
Lossless propagation of an optical pulse in a DM fiber
is described by a nonlinear Schrödinger equation with
periodically varying dispersion d�z�:

iuz 1 d�z�utt 1 juj2u � 0 , (1)

where u is the envelope of the optical pulse, z
is the propagation distance, and all quantities
are made dimensionless. Consider a two-step pe-
riodic dispersion map: d�z� � �d� 1 d̃�z�, where
d̃�z� � d1 for 0 , z 1 nL , L�2 and d̃�z� � 2d1
for L�2 , z 1 nL , L; �d� is the path-averaged
dispersion; d1 is the amplitude of the dispersion
variation; L is a dispersion period; and n is an
arbitrary integer number. Equation (1) also de-
scribes pulse propagation in a fiber with losses
compensated for by periodically placed amplif iers
if the distance between amplif iers is much less
than L.

Provided that the characteristic nonlinear length
ZNL of the pulse is large, i.e., ZNL ..L, where
ZNL � 1�jpj2 and p is a typical pulse amplitude, Eq. (1)
can be reduced to a path-averaged Gabitov–Turitsyn4

model:

iĉz�v� 2 v2�d�ĉ 1
1

�2p�2
Z sin sv1v2

sv1v2
ĉ�v1 1 v�

3 ĉ�v2 1 v�ĉ��v1 1 v2 1 v�dv1dv2 � 0 , (2)

where s � d1L�2 is the dispersion map strength, ĉ �
û exp�iv2

Rz
L/4 d̃�z0�dz0�, and ĉ�v� �

R`

2` c�t�exp�ivt�dt
is a Fourier component of c. The Gabitov–Turitsyn
model is based on the assumption of slow variation
of ĉ as a function of z on scales of the order of DM
period L. This model is well supported by numerical
simulations.8,9 Returning to t space, one can get9
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where Ci�x� �
Rx

`�cos x�x�dx [note the difference in the
definition of Ci�x� compared with that in Ref. 9]. It
was found numerically3 that the Gaussian ansatz

AGauss � p exp
µ
2

b

2
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∂
, (4)

where p and b are real constants, is a rather good
approximation for the soliton solution u � A�t�exp�ilz�
(A is real) of Eq. (1) for small and moderate values
of t at space points z � L�4 1 nL. Equation (4) is
also a good approximation for the soliton solution c �
A�t�exp�ilz� of Eq. (3). For the soliton solution Eq. (3)
takes the form

2lA 1 �d�Att �
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3 A�t2 1 t�A�t1 1 t2 1 t�dt1dt2. (5)

Based on this observation, the soliton solution of
Eq. (1) was approximated in Refs. 10 and 11 by a
Gaussian exponent multiplied by a sum consisting of
a finite number of Hermite polynomials. Because
an infinite set of these polynomials is complete in
the space of a square-integrable function, c can be
expanded over this set. But for large enough t such
an approximation cannot be effective because of the
highly oscillating tails9,10 of A for t ! `, which require
a large number of expansion terms to be taken into
account to produce a reasonable approximation. The
oscillating tails of A are of great importance because
they are responsible for the interaction of a sequence
of solitons launched in optical fiber, which limits
bit-rate capacity.6

Here the convergent set of approximate solutions of
Eq. (5) is found by means of iterating that equation
for �d� � 0. Zero iteration A�0� is given by Eq. (4).
2lA�n� is obtained by substitution of A�n21� into the
right-hand side of Eq. (5) for n � 1, 2, . . . . The oscil-
lating tails have already appeared at the f irst iteration.
© 2000 Optical Society of America
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Simultaneously one can find the dependence of b in
Eq. (4) on dispersion map strength s.

Rewriting the kernel of Eq. (2) by means of the para-
metric integral

sin sv1v2

sv1v2
�

1
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Z s

2s
exp�is0v1v2�ds0 (6)

and using Eq. (4) as a zero iteration permit integration
over time variables t1 and t2 in Eq. (3) explicitly yield
the following expressions for first A�1�, second A�2�, etc.
iterations:

A�1� � p�1�
Z s̃

2s̃
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Z Z Z Z s̃
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A�3� � . . . , (7)

where s̃ � bs, integration limits for all variables are
�2s̃, s̃�, fj � 1 2 2isj 1 3sj 2, bj � �i 1 3sj ���2b�3i 1

sj ��, j � 1, 2, 3, g � 4�4b1b2b3 2 4ib1b2s0 1 �b1 1 b2 1

b3�s02�, q � �4�b1b2 1 b1b3 1 b2b3� 1 4is0b3 1 s02��g,
and p�n� is determined by the condition that A�n�jt�0 �
p for all n. Note that instead of keeping A�n�jt�0 con-
stant for all iterations it is also possible to fix the inte-
gral P0 �

R
jA�n�j2dt if one aims to get a soliton solution

with some definite value of P0. In principle any val-
ues of l and b can be chosen for zero iteration, but it
is most useful to choose them in such a way as to get
A�1� as close as possible to A�0� to get a faster conver-
gence of iterations to a true solution of Eq. (5). It is
convenient to make series expansion A�1� in powers of
t2, which permits all terms of this expansion to be in-
tegrated explicitly. In particular,
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where c.c. means complex conjugation. Equating
terms proportional t2 in series expansions of A�1�

and Eq. (4), one gets from Eqs. (8) a transcendental
equation for s̃, which gives

s̃ � bs � 2.393 . . . (9)

and, with Eq. (5) with the same accuracy,

l � p2 3 0.482 .... (10)

Figure 1 shows the results of the f irst four iterations
obtained numerically for p � 1.7, d1 � 500, L � 0.01,
s � 2.5, �d� � 0, and t̃ � t�

p
s; b and l are given by

Eqs. (9) and (10), respectively. It is enough to consider
only positive values of t because A�t� is an even func-
tion of t. Note that when �d� � 0 Eq. (5) is invari-
ant under two scaling transforms: t ! d1t, s ! d1

2s,
A�t� ! A�t�d1� and l ! d2
2l, A! d2A, which allows

the results of Fig. 1 to be extended to all values of sys-
tem parameters p and s (of course it is sensible to con-
sider only such values of p and s for which the condition
ZNL ..L holds).

It can be seen from Fig. 1 that convergence of the it-
eration procedure to a soliton solution is very fast for
small t and becomes slower for larger t. For jt̃j & 1.3
the renormalization of A�1� by the next iteration is very
small; in particular, for all n � 2, 3, . . . , �Att

�n��A�n��jt�0
differs from b determined by Eq. (9) by less than 2%.
For jt̃j & 2.3 a good approximation is given by a second
iteration, for jt̃j & 3.2 by a third, etc. The sequence
of iterations can be interpreted as the evolution of A
along some artif icial coordinate z̃ and can indicate that
the convergence of the solution of Eq. (3) during evolu-
tion along coordinate z to the soliton solution [Eq. (5)]
should also be slower for larger t as is really observed
in numerical experiments if cjz�0 is chosen in Gauss-
ian form.12

Thus, provided that the form of the soliton is close
to Gaussian for small and moderate t, the value of bs
is universal and is given by Eq. (9). Zakharov and
Manakov13 proposed another theory of a DM soliton
in a strong DM limit based on the assumption that
the typical width of an A distribution is much less
than

p
s; the present notation, this means that bs ..1.

A priori one cannot exclude that a soliton solution with
bs .. 1 is also possible, in addition to the solution
obtained here. But such a solution cannot be Gauss-
ian-like, and, to the best of my knowledge, in all numer-
ical experiments so far the value of bs was of the order
of unity (see, e.g., Refs. 3, 9, and 10). Note that the
choice of bs ..1 for zero iteration results in the con-
vergence of iteration sequence (7) to a Gaussian-like
solution with b given by Eq. (9), which can indicate
that the solution of Eq. (3) for bs .. 1 also converges
for large z to that Gaussian-like solution. Also, one
cannot exclude the existence of a soliton with bs .. 1
for �d� fi 0, which is outside the scope of this Letter.

Let us try to explore in more detail in what
sense soliton solution A is close to Gaussian. From
Eqs. (7)–(9) one can get a series expansion (the
approximate numerical value of s̃ is used here to
avoid the need to write a cumbersome expression for
every term of the expansion):

Fig. 1. Time dependence of f irst, second, third, and fourth
iterations (curves 1, 2, 3, and 4, respectively).
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Fig. 2. First iteration A�1��t� (curve 1) versus Eq. (12)
(curve 2).
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(11)
One can conclude from this expansion that A can be
written as a multiplication of Gaussian exponent (4)
on a slow function that changes signif icantly on
scales t̃2 � 3.5. For this and larger scales there is no
similarity between the soliton solution and Eq. (4).
Thus the DM soliton is close to a Gaussian exponent
only with an accuracy up to a numerically small
parameter, which is of the order of 1�4 (because
the scale of the Gaussian exponent is bt2�2 �
s̃t̃2�2 � 1), and there is no really small parame-
ter that describes this closeness. Nevertheless the
appearance of the numerically small parameter 1�4
explains the success of the expansion of the DM
soliton solution in Hermite polynomials,10,11 which
is basically equivalent to expansion (11) in Taylor
series.

For larger scales, jt̃j * 1.3, the correct presentation
of a DM soliton requires many terms of series expan-
sion. However, one can get asymptotic behavior from
Eqs. (7); e.g., the asymptote of the first iteration is
given by

Ajt!` �
p�1�
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.

(12)
Figure 2 shows that Eq. (12) (curve 2) is a relatively
good approximation of A�1� (curve 1) for jt̃j * 1.6. But
of course to improve the accuracy of the soliton solution
approximation it is necessary to get asymptotes of the
next iterations. Another way is to use series expan-
sion (11) instead of Eq. (4) as the zero iteration. That
is, by keeping the first four terms of this expansion for
zero iteration one can get a parametric integral simi-
lar to Eqs. (7), which gives a good approximation of A�2�

in Eqs. (7) for jt̃j & 3.5. Detailed consideration of this
approximation is outside the scope of this Letter.
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